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Abstract Stack Filters are a class of non-linear fil-
ter typically used for noise suppression. Advantages of

Stack Filters are their generality and the existence of
efficient optimization algorithms under mean absolute
error [30]. In this paper we describe our recent efforts

to use the class of Stack Filters for classification prob-
lems. This leads to a novel class of continuous domain
classifiers which we call Ordered Hypothesis Machines

(OHM). We develop convex optimization based learn-
ing algorithms for Ordered Hypothesis Machines and
highlight their relationship to Support Vector Machines

and Nearest Neighbor classifiers. We report on the per-
formance on synthetic and real-world datasets includ-
ing an application to change detection in remote sens-

ing imagery. We conclude that OHM provides a novel
way to reduce the number of exemplars used in Near-
est Neighbor classifiers and achieves competitive per-

formance to the more computationally expensive K-
Nearest Neighbor method.

1 Introduction

Just as linear models generalize the sample mean and
weighted average, weighted order statistic models gen-
eralize the sample median and weighted median. A more
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detailed analogy was presented by Arce [1] and can be
continued informally, to generalized additive models in

the case of the mean, and Stack Filters in the case of
the median. Both of these model classes have been ex-
tensively studied for signal and image processing, but

in pattern classification their treatment has been sig-
nificantly one sided. Generalized additive models are
now a major tool in pattern classification and many

different learning algorithms have been developed, e.g.
Support Vector Machines, to fit model parameters to fi-
nite data. Several model classes related to Stack Filters

have been applied to classification including morpholog-
ical networks [22], which were highlighted in a special
issue of this journal [25], min-max networks [32], order

statistics [28] and positive Boolean function classifiers
[9], [16]. In nearly all of these papers, techniques were
developed without reference to the Stack Filter litera-

ture.

In previous work we investigated the direct appli-
cation of the Stack Filter model class to classification
problems. We investigated classification loss functions

and developed the concept of rank-order margin [19].
We suggested learning algorithms for this new design
criteria for the weighted order statistic model class.

More recently, we investigated the Stack Filter model
class and suggested learning algorithms based on a dis-
crete partitioning of the input space [21]. This high-

lighted the connection between Stack Filter Classifiers
and decision tree classifiers. In this paper we present a
continuous domain learning algorithm for Stack Filter

Classifiers which we call Ordered Hypothesis Machines
(OHM) and highlight the connection between Ordered
Hypothesis Machines, Support Vector Machines and

Nearest Neighbor classifiers.
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2 Problem Statement

This paper focuses on two-class classification where we
are given a training set of N points, x ∈ RD, with
labels, y ∈ {−1, 1}, drawn at random according to a

probability distribution PX,Y . The task is to find a de-
cision function F : RD → R that has small error:

e(F ) = EX,Y (sign(F (x)) ̸= y). (1)

Classification performance is measured by the ex-

cess error of the classifier compared to the Bayes op-
timal classifier e∗ = inf∀F e(F ) and can be viewed as
a combination of approximation and estimation errors

(these quantities are related to bias and variance):

e(F )− e∗ =
(
e(F )− infF ′∈Fe(F

′)
)

+
(
infF ′∈F e(F ′)− e∗

)
.

(2)

The first term is the estimation error and it is due to

the fact that we only have a finite number of examples
in the training set with which to select the best func-
tion from the function class F . The second term is ap-

proximation error and is due to the fact that the Bayes
classifier may not be represented in the function class.
These two errors have conflicting needs: a common way

to reduce approximation error is to increase the capac-
ity of the function class but this typically increases the
estimation error. The learning algorithm must balance

these needs and the most common approach is to choose
a function F̂ that minimizes a training set error:

F̂ ∈ arg min
F∈F

1

N

N∑
i=1

L(F (x(i)), y(i)) (3)

where L : (R× {−1, 1}) → R is a loss function. The
choice of loss function affects both the estimation and
approximation errors of F̂ . A popular approach is to

define a very rich function class and then parameterize
the loss function in a way that allows the tradeoff to
be easily tuned for the application: Lγ(F (x), y). At one

extreme of γ, the loss function would define a classifier
with zero approximation error and at the other extreme,
a classifier with zero estimation error. We would also

like both errors to decrease as N increases.

In the next section we describe how the Stack Fil-
ter function class can be used for two-class classification
and discuss appropriate loss functions. We suggest a pa-

rameter γ called rank-order margin which can be used
to control Stack Filter class complexity. In Section 4
we present the main contribution of this paper, which

we call Ordered Hypothesis Machines. OHM classifiers

can be considered Homogeneous Generalized Stack Fil-

ter Classifiers where the number of quantization lev-
els grows to infinity. We present a convex optimiza-
tion based learning algorithm for this function class and

show how it leads to a novel way to control the class
complexity of a Nearest Neighbor classifier.

3 Stack Filter Classifiers

3.1 Stack Filters

A Boolean function f : {0, 1}D → {0, 1} that stacks

is a Boolean function that satisfies the constraint that
ui ≥ vi, ∀i implies f(u) ≥ f(v). A Boolean function
that is defined using ‘and’ and ‘or’, but no negations,

satisfies this order constraint for all u ∈ {0, 1}D. Stack
Filters are defined by combining a Boolean function
that stacks with a threshold decomposition architecture

[8].

Given a real valued input vector x =
(x1, x2, . . . , xD) we define a vector thresholding

function u = (x ≽ c), parameterized by a scalar c,
that thresholds each element of x by c to produce the
binary vector u with elements ui = xi ≥ c. We also use

the notation x(i) to represent the ith order statistic of
the vector x, which means if a vector x was sorted into
ascending order, it could be denoted as (x(1), . . . , x(D)).

Given this notation, we define a Stack Index Filter as:

SIf (x) =
D∑
i=1

f(x ≽ x(i)) (4)

and a Stack Filter as

F (x) = x(SIf (x)) (5)

Equation 5 highlights the fact that a Stack Filter
will pick one of the components of the vector x as
an output value. Specifically, it will pick the ith order

statistic, where i is defined by the Stack Index Filter.

3.2 Stack Filters as Class Indicators

As defined by Equation 1, we typically use the sign
of a real valued function as a class indicator for two-
class classification. This appears problematic for Stack

Filters since the filter chooses one of the inputs as an
output. If all the inputs are positive, then the Stack
Filter will always predict class 1. This restrictiveness

can be overcome by augmenting the input vector with
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mirrored samples. This doubles the length of the input

vector:

xm = [x,−x] ∈ R2D. (6)

This is similar to the mirrored threshold decompo-
sition architecture suggested for signal processing ap-

plications [17] . In that paper, mirroring occurs within
the threshold decomposition architecture. In this pa-
per, mirroring is performed up front and we assume a

standard threshold decomposition architecture. Given
a mirrored input sample, the sign of the Stack Filter is
a more reasonable class indicator. That is, if we imag-

ine augmenting the expanded input with a 0, then the
median of any input vector will be zero, and this leads
to an intuitive explanation of Stack Filter Classifiers:

if the Stack Filter selects an input value greater than
the median, then it predicts y = 1. If it selects an
input value smaller than the median, then it predicts

y = −1. Figure 1 provides an example of a Stack Filter
Classifier predicting y = 1 for a mirrored input sample
xm = [3, 1, 2,−3,−1,−2].

Fig. 1 A Stack Filter acting on a mirrored string. The Stack
Index Filter would give the value 5 and the Stack Filter output
is xm(5) = 2, which means the Stack Filter predicts a class label
of +1

A second key property of the Stack Filter function

class for classification is the fact that Stack Filters com-
mute with thresholding:

F (xm) ≥ 0 ⇐⇒ f(xm ≽ 0) = 1 (7)

This implies that Stack Filter Classifiers reduce to

Boolean function classifiers applied to thresholded in-
puts. This means when applying the classifier to clas-
sification problems, we do not actually implement the

threshold decomposition architecture: we simply thresh-
old the input data at zero, and use a Boolean function
to predict the class label. Boolean function classifiers

are a well studied topic in machine learning. But as we

will see, if we consider different loss functions for Stack

Filter Classifiers we arrive at different Boolean function
classifiers.

3.3 Input Expansion

In two dimensions, the only nontrivial Stack Filters are
the minimum and maximum functions. Even in higher

dimensions, Stack Filters lack expressiveness. For ex-
ample, as [15] points out, PBF functions can not model
the parity function. Several generalizations of the Stack

Filter model class have been suggested to increase the
expressiveness of Stack Filters for the traditional signal
processing application including Generalized Stack Fil-

ters [13], Permutation Filters [12], and C-Stack Filters
[2].

Homogenous Generalized Stack Filters allow the

Boolean function to receive input from all layers of the
threshold decomposition architecture, and Inhomoge-
nous Generalized Stack Filters also allow the Boolean

Function to vary from one level to the next. We pro-
pose a generalization identical to Homogenous Gener-
alized Stack Filters, but as with mirroring, we do it by

expanding inputs up front. We define T monotonically
increasing evenly spaced thresholds {t1, . . . , tT } and ex-
pand each dimension of the mirrored input vector as:

ex = [ x1 − t1, . . . , x1 − tT , . . .
. . . , xD − t1, . . . , xD − tT , . . .

. . . ,−(x1 − t1), . . . ,−(x1 − tT ), . . .

. . . ,−(xD − t1), . . . ,−(xD − tT )]

(8)

To parallel Generalized Stack Filters the thresholds
would represent all quantization levels, however any

monotonic set can be used. We can interpret the expan-
sion geometrically in the input space and this is shown
in Figure 2 for two dimensions. A particular sample

(illustrated with the large cross) was originally repre-
sented as x = [0.35, 0.22]. It is then expanded to:

ex = [ 0.25, 0.15, 0.05,−0.05,−0.15,
0.12, 0.02,−0.02,−0.12,−0.22,
−0.25,−0.15,−0.05, 0.05, 0.15,

−0.12,−0.02, 0.02, 0.12, 0.22]

(9)

Since Stack Filters reduce to Boolean functions ap-
plied to thresholded inputs it is useful to define xb =
(ex ≽ 0). For the example:

xb = [11100, 11000, 00011, 00111]. (10)

The thresholds divide the input space into a number

of partitions, and xb represents a unique identifier for
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the partition in which the sample falls. For example, xb

for a hypothetical second sample x = [0.35, 0.21] would
be identical to Equation 10. However, if we assume the
distances between thresholds is sufficiently small (e.g.

all quantization levels), and if we assume the training
set is not in conflict, then each training sample defines
its own partition.

Given this interpretation of the input expansion,
we can now reinterpret Stack Filter Classifiers in the

binary domain. Specifically, a Stack Filter classifier is
a Boolean function defined by a look-up table, where
partitions in the input space correspond to a sub-set of

rows in the look-up table, and the assignment of ones
and zeros in the output column obeys the stacking con-
straints.

The mirrored representation, which appears to re-
dundantly index partitions, allows us to use any Boolean

function as the classifier. That is, since all xb vectors in
the input space have an equal number of ones and zeros
(Hamming weight of DT ), they can be assigned arbi-

trary labels and not violate the stacking constraints.
This means there exists a Stack Filter Classifier that
can assign any combination of labels to the partitions.

Fig. 2 Input expansion for a two-dimensional problem with five
thresholds at 0.1, 0.2, ..., 0.5.

Having defined the main components of the Stack

Filter Classifier we now turn our attention to loss func-
tions. The traditional loss function for Stack Filters is
the mean absolute error. This is an appropriate choice

for noise suppression applications in signal and image
processing, or regression. For Stack Filter Classifiers we
explore classification loss functions, illustrated in Fig-

ure 3 and discussed in the next few sub-sections.

From this point forward, to simplify notation, when-

ever we use F (x) we really mean F (ex).

zero-one loss

large margin  loss

hinge loss

x ( D T ) x (  D T + 1 ) x ( D T + 2 ) x ( D T + 3 )x ( D T - 1 )x ( D T - 2 )

y  F ( x )

L o s s  a t  m a r g i n  2

4

3

2

1

Fig. 3 Classification loss functions shown at margin γ = 2.

3.4 Zero-One Loss

One of the most common loss functions for classifica-

tion is the zero-one, or misclassification loss where we
simply count the number of training samples that are
misclassified. From Equation 7, finding the Stack Filter

which minimizes zero-one loss is equivalent to finding a
stacking Boolean function that minimizes zero-one loss:

L(F (x), y) =

{
1 if sign(F (x)) ̸= sign(y)
0 else

=

{
1− f(x ≽ x(DT+1)) if y = 1

f(x ≽ x(DT+1)) if y = −1

(11)

As we described in Section 2, with a sufficient num-
ber of thresholds during input expansion (and assum-

ing training samples are not conflicted) training sam-
ples fall into unique partitions, and we trivially find the
Boolean function that obtains zero error on the train-

ing set: we simply memorize the training data. Of course
the corresponding look-up table is extremely sparse and
almost the entire input space remains undecided.

3.5 Large Margin Zero-One Loss

Large margin zero-one loss requires the Stack Filter to
choose samples γ greater than the median for class 1,
and γ less than the median for class -1. For γ ∈ [1..DT ]:

Lγ(F (x), y) =


1 if y = 1 and F (x) < x(DT+γ)

1 if y = −1 and F (x) > x(DT−γ+1)

0 else

=

{
1− f(x ≽ x(DT+γ)) if y = 1
f(x ≽ x(DT−γ+2)) if y = −1

(12)
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The large margin loss function has the same form as the

zero-one loss problem, however the binary strings are
generated by thresholding samples higher (and lower)
in the threshold decomposition architecture. These new

binary strings will have Hamming weight DT ± γ.

In Figure 4 we illustrate increasing margin on a lat-
tice where an arrow between two Boolean vectors u and

v implies an ordering u ≥ v (ui ≥ vi, ∀i).
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Fig. 4 On the right we show the input space for a two-
dimensional problem with four partitions and two training sam-
ples. The training samples are shown with ovals for class 1 and
squares for class -1. The mirrored representation means that the

original input space is a subset of entries in the middle row of the
lattice and these are the four binary strings in bold. As margin
is increased, our training samples move lower (for class 1) and
higher (for class -1) in the lattice, and this produces increasing

numbers of constraints. By assigning class labels to entries higher
(or lower) in the lattice, we induce class labels, or cover a greater
fraction of the middle row and hence the input space.

In Figure 5 we illustrate increasing margin in the

input space. As margin increases the partitions asso-
ciated with training samples grow in size. In previous
work we grew partitions one direction at a time, always

in the direction of the closest threshold, as dictated by
the threshold decomposition architecture [21]. In this
paper we expand partitions by one threshold in all di-

rections at the same time. The resulting partitions cor-
respond to binary strings 2D threshold levels away from
the previous level. We interpret margin γ = 0 as a par-

tition of zero radius, i.e. just a point. Margin γ = m is
interpreted as m increases in 2D dimensions, or m2D
steps in the threshold decomposition architecture. In

Figure 5 we have increased the margin to γ = 1 and
training samples now define larger partitions which are
illustrated with bold solid lines for class 1 and shading

for class -1.

Fig. 5 Partitions defined by class 1 samples (crosses) and class

-1 samples (circles) at margin γ = 1.

3.5.1 Optimization

As the margin is increased, the partitions associated
with training samples begin to overlap. When the par-
titions have different labels, there is a potential for a

Boolean function to violate the stacking constraints.
We use a zero-one integer linear program to find the
optimal Boolean function that satisfies the constraints,

much like Stack Filter design under Mean Absolute Er-
ror [30].

Formulating the linear program requires us to ma-

nipulate and compare xb for each sample. Since thresh-
olds are monotonically increasing, we can do this effi-
ciently with ranks, i.e., each dimension is represented

by integers which count the number of thresholds below
the component for the first half of the mirrored sample
and count the number of thresholds above the compo-

nent in the second half of the mirrored string. This leads
to a 2D dimensional vector r with components:

rd =
∑T

i=1 I((xd − ti) > 0) for d = 1, . . . , D

rD+d =
∑T

i=1 I(−(xd − ti) > 0) for d = 1, . . . , D
(13)

where I() is the indicator function. For the example
x = [0.35, 0.22] in Figure 2, the rank representation
would be r = [3, 2, 2, 3]. As we increase margin we sim-

ply reduce the ranks for class 1 samples, and increase
the ranks for class -1 samples. Continuing the exam-
ple for γ = 1 (as shown in Figure 5) the rank reduced

sample would be [2, 1, 1, 2].
To find a Boolean function that minimizes the zero-

one loss at margin γ, we associate a binary variable z

with the output column of a partially specified Boolean
function look-up-table. We only need to consider the N
rows associated with the rank reduced (or increased)

training set. Our objective is to set the output column
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for these rows to the class labels in the training set, but

this is subject to the stacking constraints:

maximize
∑N

i=1 zi
subject to zi + zj ≤ 1

when ri ≤ rj {∀i, j|yi ̸= yj}
and zi ∈ {0, 1} ∀i ∈ {1, . . . , N}

(14)

The constraint matrix is unimodular and the linear

program relaxation (zi ∈ [0, 1]) is exact. Note that in
Equation 14 we aim to set zi to one for both class 1
and class -1 samples. This is to simplify the notation

and leads to the interpretation of z as a indicator that
will determine if we keep (1) or discard (0) the training
sample. If we wanted z to reflect the class labels we

would set the output column of class -1 rows where
zi = 1 to 0.

After the optimal values of z are found, we can use

the partially specified look-up-table to predict new sam-
ples. To do this, we must determine if a new sample is
covered by any of the rows in the look-up table. To de-

termine if a new sample r, in rank representation form,
is covered by class 1, we evaluate r ≥ ri for all class
1 rows with zi = 1. To determine if a new sample is

covered by class -1, we evaluate r ≤ ri for all class -1
rows with zi = 1. If a new sample is covered by multi-
ple rows, then the stacking constraints will ensure that

these rows will all have the same output value. In terms
of the example in Figure 5, this would mean the gray
and solid line partitions will not be allowed to overlap,
and so some of training samples will be misclassified.

3.5.2 Model Class Complexity

An important property of the large margin zero-one loss

is that as γ increases, the number of Boolean functions
that can satisfy the additional constraints decreases.
These loss functions therefore define reducing sets of

Boolean functions. More specifically, a Stack Filter min-
imizer of zero-one loss at margin γ:

F̂γ(x) ∈ arg min
F∈F

Lγ(F (x), y)

is equivalent to minimizing misclassification loss with a

Stack Filter from a restricted function class:

F̂γ(x) ∈ arg min
F∈Fγ

L(F (x), y)

where Fγ ⊆ . . . ⊆ F1 ⊆ F . The margin parameter
is monotonically related to the size of the Stack Filter
function class and is also discrete and bounded. This is

an important property since it means rank-order mar-
gin can be used to control model class complexity for
Stack Filter Classifiers, much like regularization in Sup-

port Vector Machines.

3.6 Hinge Loss

The hinge loss at margin γ is similar to the hinge loss

used in Support Vector Machines, which is defined as
max(−yF (x), 1) , but it differs in that hinge loss for
Stack Filter Classifiers is bounded above by 2γ and

takes the value zero at F (x) = x(DT+γ). Due to the
stacking constraints, hinge loss can be defined as a sum
of large margin zero-one loss functions:

Lh
γ(F (x), y) =

γ∑
γ̂=−γ

Lγ̂(F (x), y) (15)

which can be decomposed in the binary domain:

Lh
γ(F (x), 1) =

∑γ
γ′=−γ 1− f(x ≽ x(DT+γ′))

Lh
γ(F (x),−1) =

∑γ
γ′=−γ f(x ≽ x(DT−γ′+2))

(16)

The hinge loss linearly penalizes samples by how
much they are misclassified as measured by rank-order

margin. Hinge loss can also be interpreted in the in-
put space. Unlike large margin zero-one loss which op-
timizes the placement of N partitions of size γ, hinge

loss optimizes the placement of γN partitions with sizes
varying from 1 . . . γ. This means the approximation er-
ror of the final classifier is typically much smaller than

the large margin zero-one classifier. The estimation er-
ror however is related to the number of Boolean func-
tions that satisfy the stacking constraints, and this is

the same for both zero-one and hinge loss classifiers.
Our previous work confirmed the superior performance
of Stack Filter Classifiers designed under hinge loss in

both synthetic and real-world experiments [21].

The problem with hinge loss minimization is com-

putational complexity. We must include the complete
set of partitions (rows of the look-up-table) defined
by training samples as margin is increased from −γ

to γ within the linear program. In practical problems
this number depends on the number of thresholds used
during input expansion. We would like the number of

thresholds to be very large so that Stack Filter Classi-
fiers can be applied to a wide range of problems, and
the linear program soon becomes computationally pro-

hibitive. In the next section we present the main con-
tribution of this paper, which is to suggest that hinge-
loss minimization of Stack Filter Classifiers can be ef-

ficiently solved in the continuous domain where the
number of thresholds grows to infinity (or alternatively,
the distance between quantization levels diminishes to

zero).
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4 Ordered Hypothesis Machines

Ordered Hypothesis Machines are Stack Filter Classi-
fiers with a particular choice of input expansion that
permits efficient minimization of hinge loss. The key

observation is that although hinge loss requires binary
chains of length 2γ for each training sample during op-
timization, we can keep track of the length of the chain

instead of keeping track of its individual members. We
first describe the required input expansion and then de-
scribe the optimization.

4.1 Input Expansion

In the discrete case γ corresponds to number of thresh-
old levels above and below the median in the threshold
decomposition architecture. In the input space, this de-

fines partitions around each training sample, growing
one threshold at a time. Note that in the previous sec-
tion we suggested making 2D steps for each increase in

γ. This is because, we now suggest a continuous param-
eterization of γ where partitions grow symmetrically
through an infinite number of threshold levels and γ

corresponds to the size of the partition in the input
space.

This continuous formulation reduces the number of
variables to N : we have a single variable associated

with each training sample that represents the number of
symmetrically increasing partitions that are associated
with the training sample’s class label. The final com-

ponent to be defined is the shape of the partition. We
suggest parameterizing this shape by a distance func-
tion:

dij = ∥xi − xj∥p (17)

To mimic the rectangular partitions defined by axis-

parallel thresholds we would choose p = ∞. However
other choices include spherical partitions (∥ ∥2) and
diamond-shaped partitions (∥ ∥1). In fact, any shape

in the input space can be used, as long as the overlap
between partitions varies linearly with γ. For the exper-
iments in this paper we use ∥ ∥2 since it will produce

decision surfaces most similar to the classifiers we com-
pare to in our experiments: Support Vector Machines
with Gaussian Kernels, and Nearest Neighbor Classi-

fiers based on Euclidean distance. In experiments not
published we observed very little difference in perfor-
mance with different values of p. We revisit this topic

in our final summary in Section 6.

4.2 Optimization

We associate a real-valued variable vi ∈ [0, 2γ] with

each training sample xi ∈ RD, and associated label,
yi ∈ {−1, 1}. The range of the variable is 2γ, instead
of γ to account for loss incurred at values of negative

margin. If the final value of the variable is less than γ,
the training sample gets misclassified. If the final length
is 2γ, the training sample is at the center of a partition

of size γ in the input space. The following optimiza-
tion procedure minimizes hinge loss for the continuous
domain classifier by maximizing variable sizes subject

to the constraint that no two partitions with different
labels overlap:

maximize
∑N

i=1 vi
subject to vi + vj ≤ 4γ −∆i,j if yi > yj

and 0 ≤ vi ≤ 2γ ∀i ∈ {1, . . . N}
(18)

where ∆i,j = max(2γ − di,j , 0).

In the Stack Filter integer linear program in Equa-
tion 14, the variables are indicators that determine whether

we keep (1), or discard (0), partitions of different fixed
sizes. We solve a linear program relaxation with a uni-
modular constraint matrix, and threshold the real-valued

variables found to obtain an exact integer solution. In
Equation 18 we solve a very similar linear program but
the constraint matrix is no longer uni-modular (since

we introduce non binary values into the right hand side
of the constraint equations) and we use the real-valued
variables found by the linear program directly to deter-
mine partition sizes.

4.2.1 Deciding Between Minimum Cost Solutions

The optimization problem in Equation 18 is an under-
determined problem and there may be several solutions.
Prior knowledge can be introduced that would prefer

one class over another. In our experiments we tried to
balance the choice: If we minimize ∥v∥1 while maxi-
mizing a small multiple of ∥v∥22, we get a solution that

gives the components of v equal weight. In practice we
choose a small value (for example w = 10−15):

maximize
∑N

i=1 vi − w
∑N

i=1 v
2
i

subject to vi + vj ≤ 4γ −∆i,j if yi > yj
and 0 ≤ vi ≤ 2γ ∀i ∈ {1, . . . N}

(19)

4.2.2 Online Learning Algorithm

The linear (or quadratic) programs suggested in the

previous sections provide an efficient learning algorithm
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for Ordered Hypothesis Machines which has similar com-

putational complexity to Support Vector Machines. How-
ever, for large scale problems (thousands of training
samples or more) generic solvers often surpass the mem-

ory available in today’s typical workstation. In the case
of Support Vector Machines, much effort has been spent
specializing quadratic programming for the specific SVM

optimization [18]. This kind of approach is also likely to
provide substantial performance improvements in solv-
ing Equation 18 for Ordered Hypothesis Machines and

is a topic for future research.
In Section 5.3 we apply OHM to a change detec-

tion problem which requires large numbers of training

samples. Our generic solver ran out of memory for this
problem and so we implemented an adaptive learning
algorithm based on the adaptive Stack Filter algorithm

first presented in [14]. The continuous domain version
of this algorithm can be summarized as:

Input: v(t), di,j , α Output: v(t+ 1)

Repeat

1. Update
vi(t+ 1) = (1− α)vi(t) + (α)2γ ∀i

2. Check
If vi(t+ 1)+ vj(t+ 1) ≤ 2γ + dij ∀j|yi ̸= yj

then return vi(t+ 1)

Else proceed to step 3

3. Iterate
If vi(t+ 1)+ vj(t+ 1) > 2γ + dij ∀j|yi ̸= yj

∆ij = vi(t+ 1) + vj(t+ 1) −2γ − dij
vi(t+ 1) = vi(t+ 1)−∆ij/2
vj(t+ 1) = vj(t+ 1)−∆ij/2

Set i = j
Go to 2.

(20)

At the end of each pass (Steps 1 through 3 complete)
we are guaranteed to have non-overlapping partitions
and we can stop at any time.

4.3 Application

After training OHM classifiers we have a set of parti-
tions (of varying sizes) associated with training sam-
ples. To apply this classifier to a test point, we must

evaluate if the test point falls within a partition. If it
does, we assign the test point the class label of the asso-
ciated training sample. The stacking constraints guar-

antee that the test point will not fall into multiple par-

titions with different class labels. However, the point

may fall outside of all partitions in which case it’s label
will be undetermined. Note that as the dimension of
the problem increases, it is more and more likely that a

test point will be undetermined. Various schemes for as-
signing labels to undetermined points are possible (e.g.
assign label to the class which largest prior probability)

that may or may not work better in different applica-
tions. We suggest using a Nearest Neighbor Classifier
to assign these labels, since in our formulation, finding

the nearest neighbor is equivalent to finding the nearest
partition. For a test point x and training sample i:

F̂ (x) = yargmaxi(vi−di,x) ∀i ∈ {1, . . . N} (21)

Equation 21 obtains the same training error as the

OHM classifier. However when extrapolating the classi-
fier to test data, Equation 21 is different. For example,
at γ = 0 all vi = 0 which means all (nontrivial) test

points are undecided. In this case Equation 21 is iden-
tical to the Nearest Neighbor Classifier. However as γ
is increased, OHM classifiers will introduce larger and
larger offsets into Equation 21.

An important side effect of increasing the size of
partitions, is that some partitions become redundant.

That is, the stacking constraints force some partitions
to completely cover partitions from the opposite class,
which means they do not contribute to the final classi-

fier. After optimization we can post process the samples
to determine which partitions are covered and the as-
sociated training samples can be thrown away.

In Figure 6 we show this affect for a two dimensional
synthetic problem with 100 training samples (50/50
class membership). As margin is increased we observe

a typical trough in the error estimate, and also see a
monotonically decreasing number of remaining training
samples (or exemplars).

4.4 Relationship to Other Classifiers

4.4.1 Support Vector Machines

The approach used to develop Ordered Hypothesis Ma-
chines is analogous to Support Vector Machines. Both
approaches use convex optimization to select empirical-

error minimizing functions which are defined over train-
ing samples. In the case of SVMs with particular ker-
nels, there is theoretical interest in the fact that this

expanded feature space has infinite dimension. As we
have described, OHM classifiers are also chosen from a
class of Stack Filters that operate on a feature space of

infinite dimension. Both approaches also provide a free
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Fig. 6 Error estimates and number of remaining training sam-

ples (exemplars) as margin is increased.

parameter that can be directly tied to model complex-
ity. In the case of SVMs this parameter controls the
magnitude of the weight vector used to linearly com-

bine distance functions to training samples. In the case
of OHM, this parameter characterizes the number of
Boolean functions that can satisfy the stacking con-

straints.

The two approaches also overlap in the permissable
input expansions. SVMs permit any expansion that can

be embedded in an inner product space, which leads to
the class of Kernel functions. OHM also permits some
expansions that could be defined with Kernel functions,

but it limits the choice to Triangular finite support
Kernels. During optimization SVMs find multiplicative
weights for Kernel functions with constant width cen-

tered on training samples. In contrast, OHM chooses
different widths for the Kernels centered on training
samples.

However SVM and OHM classifiers are fundamen-

tally different classifiers. SVMs produce a generalized
additive model where a test point is classified based
on the sum of relationships to a subset of the train-

ing samples, whereas OHM predicts a test point based
on its relationship to a single exemplar within a sub-
set of training samples. This means OHM has a closer

connection to Nearest Neighbor Classifiers.

4.4.2 Nearest Neighbor Classifiers

At a margin of zero - when training samples are as-
sociated with infinitesimally small partitions - OHM
can be implemented with a Nearest Neighbor Classifier

(Eq. 21 with vi = 0 ∀i). At larger margins the opti-

mization grows partitions and dismisses training sam-

ples that get covered by partitions of the opposite class.
This means we introduce a training sample specific off-
set (vi > 0) into the distance function. This means our

distance function is neither reflexive, symmetric or non-
negative and is reminiscent of adaptive nearest neighbor
methods [29].

Most importantly, OHM provides a global optimiza-
tion method that selects which samples are used in the
final classifier. In this light, OHM provides a new type

of condensed nearest neighbor method [31] and pro-
duces classifiers with smaller computational cost than
the Nearest Neighbor Classifier. Also, as we see in the

next section, choosing a subset of training samples also
leads to improved performance.

4.4.3 Morphological Networks

Morphological Neural Networks (MNN) are also related

to OHM classifiers [22]. They define decision regions by
combining axis-aligned offsets with morphological op-
erations and therefore are most similar to Stack Filter

Classifiers. However the approach used for training is
significantly different. MNN learning has focussed on
constructive algorithms which incrementally build de-

cision surfaces by minimizing training data error [23],
[24]. This provides a way to adapt the size and shape of
partitions around training samples and this increased

flexibility may be useful in some applications. An open
question with the constructive approach is: what is the
appropriate choice for a stopping condition that can

balance approximation and estimation errors? The OHM
approach includes the stopping condition within the
loss function, and then transforms the problem into

a known convex optimization problem with good run-
time bounds. It may be fruitful to consider how the
benefits of both approaches may be combined.

5 Experiments

5.1 Synthetic Experiments

In this section we compare OHM as defined by Equa-

tion 19, with a radial basis Support Vector Machine
implemented in LIBSVM [7], as well as CART Decision
trees [6] and Nearest Neighbor Classifiers implemented

in OpenCV [4]. To select the free parameters for the
SVM we varied the amount of regularization (C in LIB-
SVM) and the width of the Gaussian kernel through

{10−2, 10−1, 0, 10, 100}, i.e. we tried 25 combinations of
parameters with a training set and validation set of size
250 and then used a test set of size 2000. To find a good

value of margin for OHM (γ in Equation 19), we split
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the interval from 0.01 to
√
D, where D is the dimension

of the problem into 25 equal parts and used a similar
sized validation set. The OpenCV implementation of
CART implements its own cross-validation procedure

for tree pruning, and so we provided both training and
validation samples (a total of 500 samples) to the train-
ing procedure.
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Fig. 7 Data for Experiments 1 and 2: overlapping normal data
and overlapping chisquare data, shown in 2 dimensions.

Experiment 1: We chose overlapping independent
normal random values form a 1-dimensional setting up

to a 32-dimensional setting. For class 1 we selected
means of all zeros and a the covariance matrix the iden-
tity matrix I and for class 0 we selected a mean of

all 0.25 and covariance matrix of 0.75 ∗ I. As the di-
mensions grow, this problem gets easier, as the sample
means start pulling apart. The decision tree is at a dis-

advantage on this problem since it uses axes parallel
decision surfaces. We also apply Nearest Neighbor and
K-Nearest Neighbor Classifiers to the problem. We re-

peated the experiment 20 times and plotted the mean
error and with an errorbar of one standard deviation in
either direction.

We observed an improvement in performance of the
Nearest Neighbor Classifiers as K increased upto a value

of 7, at which point performance did not improve. OHM
performed midway between the best Nearest Neighbor
Classifier and the SVM on this problem.

Experiment 2: For the data we selected a skewed
distribution, i.e we used a random variable x with a
chisquare distribution with 3 degrees of freedom. In

each dimension the samples of class 0 were of the form
5 + x and the class 1 samples were of the form 10− x.
We repeated the experiment 20 times and plotted the

mean error and with an errorbar of one standard devi-
ation either direction.

It is striking that in this experiment the order of

the classifiers is reversed from Example 1: this time the
decision tree outperforms the SVM and OHM is again,
approximately midway between. We also observed that

at extremely high dimensions, the performance of Near-
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Fig. 8 Experiment 1: Comparison of OHM , SVM, CART and
Nearest Neighbor Classifiers on independent normal distributions

in dimensions 1 to 128.

est Neighbor methods improves quickly, and that OHM
inherits these characteristics.
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Fig. 9 Experiment 2: Comparison of OHM , SVM, CART and
Nearest Neighbor Classifiers on overlapping chisquare distribu-

tions.

From Figures 8 and 9 we see that the best classi-
fier for the job depends on the application. The two
problems are in some sense at two extremes: the Gaus-

sian data is ideal for generalized additive models and
the Chisquare data ideal for decision trees. While OHM
does not perform as well as the best algorithm in either

case, it does perform close to the best algorithm in both
cases. In addition, the OHM performance is remarkably
better than the Nearest Neighbor Classifier considering

how small the modification in Equation 21 is in prac-
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tice. We presented additional experiments that compare

OHM to Nearest Neighbors and K-Nearest Neighbors in
[20] where we observed OHM consistently outperform-
ing K-Nearest Neighbors, which is considerable more

expensive to compute.

5.2 Benchmark Data Sets

Blanchard et al in [3] compared C4.5 decision trees,
Optimal Decision trees (ODT) on a group of data sets
adapted from the UCI repository and compared it to

the results by the best known (2007) classifiers for those
sets. They split the data into 100 groups of training and
test data and recorded the average and the standard

deviation of the MSE. We used their data sets to test
OHM in Equation 19. The results are listed in Table 1.

Table 1 Classification accuracies on selected benchmarks. *Re-
sults reproduced from [3]. Data sets are (1) Banana, (2) Breast
Cancer, (3) Diabetes, (4) Flare-Solar, (5) Thyroid and (6) Titanic

Data Best results∗ NN KNN − 7 OHM

(1) 10.7± 0.4 13.6± 0.0 11.4 ± 0.0 11.4 ± 0.8
(2) 24.8± 4.6 33.1 ± 0.2 27.7 ± 0.2 27.7 ± 0.2

(3) 23.2± 1.6 30.1± 0.0 27.0 ± 0.0 26.7 ± 1.9
(4) 32.4± 1.8 38.9± 0.2 36.2 ± 0.0 34.4 ± 2.2
(5) 4.2 ± 2.1 4.4± 0.0 8.7 ± 0.0 4.8 ± 2.4
(6) 22.4± 1.0 30.6± 1.0 24.6 ± 0.4 22.4 ± 1.0

On all problems OHM obtained similar or better

performance than K-Nearest Neighbors and in all prob-
lems but Thryroid, this was significantly better than
the Nearest Neighbor Classifier. The methods that ob-

tained the best results reported in [3] were all gener-
alized additive models trained with different learning
algorithms. The best results on datasets 4 and 5 were

obtained with an SVM with Gaussian Kernels.

One reason why OHM has larger variance is due to
the margin parameter. In all problems we used half the

training set as a validation set to pick the best value of
margin. Once found, OHM was retrained at that margin
with the entire training set. Some of the test problems

have a small number of training samples (e.g. Titanic
has 150 samples) and we observed a large variation in
the value of margin selected (and hence performance)

across the 100 groups. In future work we hope to inves-
tigate properties of the margin in more detail with the
aim of developing more sophisticated selection methods

for the margin parameter.

5.3 Application to Change Detection in Hyperspectral

Imagery

In this section we apply OHM to a change detection
problem using Airborne Visible/Infrared Imaging Spec-

trometer (AVIRIS) hyperspectral data [11]. Informally,
the change detection problem involves two co-registered
images of the same scene (e.g. two images taken at dif-

ferent times), and we would like to identify pixels that
appear different due to anomalous changes of interest
(e.g. new objects, or new types of materials) but ignore

pixels that appear different due to pervasive differences
(e.g. due to misregistration, different atmospheric con-
ditions, seasonal differences etc.).

We cast change detection as a classification prob-

lem as suggested in [27]. Let a ∈ RDx be a pixel from
one image (with Dx spectral channels) and b ∈ RDy

be a pixel from the second image (with Dy spectral

channels). The joint density p(a, b) represents the per-
vasive differences (or background) and we choose the
product of marginal densities as a model of the anoma-

lous changes of interest: p(a)p(b). Pixels of interest are
then defined as pixels whose ratio of foreground to back-
ground models exceeds a certain threshold:

I(a, b) =

{
1 if p(a)p(b)

p(a,b) > t

−1 otherwise
(22)

We are typically interested in anomalous, or ex-

tremely rare categories of change (a False Alarm Rate
10−3 . . . 10−5), and therefore the threshold is usually
set very high. When the distributions are assumed to

be Gaussian, closed form solutions to Equation 22 can
be derived [26]. This solution method is called Hyper-
bolic due to the shape of its decision surfaces.

Nonparametric classifiers can also be applied to this

problem by artificially sampling from the two classes.
Normal change or class −1 samples are generated by
randomly choosing a location i and concatenating the

matching pixels from each of the two images as x =
[ai|bi]. Anomalous change or class 1 samples are gener-
ated by randomly choosing two locations i, j and con-

catenating the pixels from the two different locations of
each picture as x = [ai|bj ].

One of the challenges for building change detection
algorithms for very rare targets is evaluation. The re-

sampling strategy just described can also be used as a
simulation framework for evaluation purposes, and this
is illustrated in Figure 10. We start with a single image

which we call the base image (left). We then intention-
ally introduce a pervasive difference which we would like
to evaluate against (middle). In this case the second im-

age is a smoothed version of the base image. We then



12

Fig. 10 Experiment 3: An 150 × 150 pixel AVIRIS image for
Florida. Left: example image from the original hyperspectral
cube. Middle: example image with simulated pervasive differences
(smoothing). Right: permutation of the pixels to simulate anoma-

lous changes.

simulate the anomalous changes by randomly shifting
pixels in the pervasive difference image to generate an
anomalous change image (right). To evaluate change de-

tection algorithms, we simply apply our classifier to two
pairs of images. When applied to the base image, perva-
sive difference image pair, the classifier should predict

class -1 for all pixels. When applied to the base image,
anomalous change image pair, the classifier should pre-
dict class 1 for all shifted pixels. By using the entire im-

age this approach allows us to evaluate our algorithms
at the desired 10−3 . . . 10−5 False Alarm Rate range.

As was observed in [26], considerable performance
gains are possible by reducing the dimensionality of hy-
perspectral imagery, prior to applying change detection

algorithms. We therefore reduced the dimension from
the original 224 channels to 5 channels per image with
(linear) canonical correlation analysis. This leads to a

10 dimensional classification problem.

We compare the performance of OHM to the Hyper-

bolic algorithm as well as simple subtraction (The Mal-
hanobis distance of (a− b)). Our images contain 22500
pixels. We use 12000 samples to estimate the required

covariance matrices and evaluate performance with the
remaining 10500 samples. To generate Receiver Oper-
ator Curves of Figure 11 we obtain a real-valued out-

put from these techniques and sweep through a final
threshold. We perform the experiment three times for
each technique with different training partitions.

For OHMwe use 2000 samples in training, and 10000
samples as a validation set to choose free parameters.

Unlike the Hyperbolic and Subtraction classifiers, our
classifier is optimized for a specific threshold. To gen-
erate results at different False Alarm Rates, we must

introduce an additional parameter. This parameter con-
trols the fraction of Class 1 samples in the training set,
and during experiments it takes on values [0.1, 0.15, 0.2].

This biases the OHM classifier towards the desired low

Fig. 11 Results for Experiment 3 compares OHM to subtraction
(Mahalanobis distance of the difference) and hyperbolic methods.

FAR regime. The second free parameter is the margin
parameter and it was varied uniformly at 20 locations

across the data input range.

Although 2000 samples is much smaller than the
number of training samples used for the Hyperbolic and

Subtraction methods, it was too large for our generic
Equation 19 solver. Therefore, in this experiment we
use the adaptive algorithm described in Section 4.2.2.

We set α to 0.01 and run for 500 iterations for each
parameter combination. This leads to 60 different clas-
sifiers.

All 60 classifiers are applied to the validation set and
then we choose the classifier with the best detection rate
for a given false alarm rate. This classifier is then ap-

plied to the test set and the performance plotted in Fig-
ure 11. This process was repeated three times with dif-
ferent training (and validation) partitions. Note, with

this approach we obtain classifiers that cover the range
of False Alarm Rates uniformly over the validation set.
However as observed in Figure 11, this is not guaran-

teed with test set performance. Larger validation and
test set sizes would help with this problem.

6 Summary

Applying the Stack Filter model class to classification
problems sheds new light on Decision Trees, Support
Vector Machines as well as Nearest Neighbor Classifiers.

In previous work we have shown interesting connections
between the discrete Stack Filter Classifier and Decision
Trees. In this paper we investigated a continuous do-

main Stack Filter classifier called Ordered Hypothesis
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Machines (OHM) that has interesting relationships to

Support Vector Machines and Nearest Neighbor Clas-
sifiers.

We have shown that OHM classifiers can be imple-

mented with a simple modification of Nearest Neighbor
Classifiers, and that OHM training reduces the number
of exemplars (and hence the memory storage required

by Nearest Neighbor methods) and obtains competitive
performance to K-Nearest Neighbor Classifiers which
have significantly greater computational complexity. In

addition, by approaching training as error minimization
OHM allows us to design Nearest Neighbor Classifiers
for cost sensitive problems where one class is extremely

rare. In this paper we demonstrated this with a change
detection application, but there are many other appli-
cations for this capability [20].

The connection that this paper makes between OHM
classifiers and Nearest Neighbor Classifiers also points
to topics for future research. OHM Classifiers, Nearest

Neighbor Classifiers, Morphological Networks as well
as Decision Tree classifiers, all assume the class con-
ditional densities are constant within local partitions
of training samples and this can lead to high approxi-

mation error (and poor performance) in problems with
high dimensions [10]. This may partly explain why we
observed negligible difference in the performance when

using different partition shapes.
Finally, we observe that a popular way to improve

performance of Decision Tree classifiers is to use vot-

ing, or ensembles [5]. Stack Filters have also been in-
terpreted as voting networks and it is possible that the
stacking constraints could have a role to play in these

larger architectures.
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